

Axioms of Probability

Recall: S = all possible outcomes. E = the event.

- Axiom 1: $0 \le P(E) \le 1$
- Axiom 2: P(S) = 1
- Axiom 3: $P(E^c) = 1 P(E)$

Axioms of Probability

Recall: S = all possible outcomes. E = the event.

- Axiom 1: $0 \le P(E) \le 1$
- Axiom 2: P(S) = 1
- Axiom 3: If events *E* and *F* are mutually exclusive:

$$P(E \cup F) = P(E) + P(F)$$

Mutually Exclusive Events

If events are mutually exclusive, probability of OR is simple:

$$P(E \cup F) = P(E) + P(F)$$

Mutually Exclusive Events

If events are mutually exclusive, probability of OR is simple:

$$P(E \cup F) = \frac{7}{50} + \frac{4}{5} = \frac{11}{50}$$

OR with Many Mutually Exclusive Events

$$P(X_1 \cup X_2 \cup \dots \cup X_n) = \sum_{i=1}^n P(X_i)$$

If events are *mutually* exclusive probability of OR is easy!

$$P(E^c) = 1 - P(E)?$$

$$P(E \cup E^c) = P(E) + P(E^c)$$

Since E and E^c are mutually exclusive

$$P(S) = P(E) + P(E^c)$$

Since everything must either be in E or E^c

$$1 = P(E) + P(E^c)$$

Axiom 2

$$P(E^c) = 1 - P(E)$$

Rearrange

Why study probability?

Dice - Our Misunderstood Friends

- Roll two 6-sided dice, yielding values D₁ and D₂
- Let \sqsubseteq be event: $D_1 + D_2 = 4$
- What is P(E)?
 - \blacksquare |S| = 36, E = {(1, 3), (2, 2), (3, 1)}
 - P(E) = 3/36 = 1/12
- Let F be event: $D_1 = 2$
- P(E, given F already observed)?
 - \blacksquare S = {(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)}
 - \blacksquare E = {(2, 2)}
 - P(E, given F already observed) = 1/6

Dice - Our Misunderstood Friends

Two people each roll a die, yielding D₁ and D₂.
 You win if D₁ + D₂ = 4

Q: What do you think is the best outcome for D₁?

- Your Choices:
 - A. 1 and 3 tie for best
 - B. 1, 2 and 3 tie for best
 - C. 2 is the best
 - D. Other/none/more than one

- Conditional probability is probability that E occurs given that F has already occurred "Conditioning on F"
- Written as P(E|F)
 - Means "P(E, given F already observed)"
 - Sample space, S, reduced to those elements consistent with F (i.e. S ∩ F)
 - Event space, E, reduced to those elements consistent with F (i.e. E

 F)

With equally likely outcomes:

$$P(E \mid F) = \frac{\text{# of outcomes in } E \text{ consistent with } F}{\text{# of outcomes in } S \text{ consistent with } F}$$
$$= \frac{\mid EF \mid}{\mid SF \mid} = \frac{\mid EF \mid}{\mid F \mid}$$

$$P(E) = \frac{8}{50} \approx 0.16$$

$$P(E|F) = \frac{3}{14} \approx 0.21$$

With equally likely outcomes:

$$P(E \mid F) = \frac{\text{\# of outcomes in } E \text{ consistent with } F}{\text{\# of outcomes in } S \text{ consistent with } F}$$

$$= \frac{|EF|}{|SF|} = \frac{|EF|}{|F|}$$

Shorthand notation for set intersection (aka set "and")

$$P(E) = \frac{8}{50} \approx 0.16$$

$$P(E|F) = \frac{3}{14} \approx 0.21$$

General definition:

$$P(E \mid F) = \frac{P(EF)}{P(F)}$$

- Holds even when outcomes are not equally likely
- Implies: P(EF) = P(E | F) P(F) (chain rule)

- P(E | F) undefined
- Congratulations! You observed the impossible!

Generalized Chain Rule

General definition of Chain Rule:

$$P(E_1 E_2 E_3 ... E_n)$$

$$= P(E_1) P(E_2 \mid E_1) P(E_3 \mid E_1 E_2) ... P(E_n \mid E_1 E_2 ... E_{n-1})$$

Conditional Paradigm

Name of Rule	Original Rule	Conditional Rule $0 \le P(E \mid G) \le 1$	
First axiom of probability	$0 \le P(E) \le 1$		
Complement Rule	$P(E) = 1 - P(E^C)$	$P(E \mid G) = 1 - P(E^C \mid G)$	
Chain Rule	$P(EF) = P(E \mid F)P(F)$	$P(EF \mid G) = P(E \mid FG)P(F \mid G)$	

+ Learn

What is the probability that a user will watch Life is Beautiful?

P(E)

$$E = \{Watch\}$$

$$P(E) = \frac{1}{2}$$
?

Piech, CS106A, Stanford University

What is the probability that a user will watch Life is Beautiful?

P(E)

What is the probability that a user will watch Life is Beautiful?

P(E)

$$P(E) = \lim_{n \to \infty} \frac{n(E)}{n} \approx \frac{\text{\#people who watched movie}}{\text{\#people on Netflix}}$$

$$P(E) = 10,234,231 / 50,923,123 = 0.20$$

Let *E* be the event that a user watched the given movie:

$$P(E) = 0.19$$

$$P(E) = 0.32$$

$$P(E) = 0.20$$

$$P(E) = 0.09$$

$$P(E) = 0.23$$

What is the probability that a user will watch Life is Beautiful, given they watched Amelie?

$$P(E|F) = \frac{P(EF)}{P(F)}$$

What is the probability that a user will watch Life is Beautiful, given they watched Amelie?

$$P(E|F) = \frac{P(EF)}{P(F)} = \frac{\frac{\text{\#people who watched both}}{\text{\#people on Netflix}}}{\frac{\text{\#people who watched } F}{\text{\#people on Netflix}}}$$

What is the probability that a user will watch Life is Beautiful, given they watched Amelie?

$$P(E|F) = \frac{P(EF)}{P(F)} = \frac{\text{\#people who watched both}}{\text{\#people who watched } F}$$

$$P(E|F) = 0.42$$

Piech, CS106A, Stanford University

Let *E* be the event that a user watched the given movie, Let *F* be the event that the same user watched Amelie:

$$P(E|F) = 0.35$$

$$P(E|F) = 0.20$$

$$P(E|F) = 0.72$$

$$P(E|F) = 0.49$$

Machine Learning

Machine Learning is: Probability + Data + Computers

Sophomores

- There are 400 students in CS109:
 - Probability that a random student in CS109 is a Sophomore is 0.43
 - We can observe the probability that a student is both a Sophomore and is in class
 - What is the conditional probability of a student coming to class given that they are a Sophomore?
- Solution:
 - -S is the event that a student is a sophomore
 - A is the event that a student is in class

$$P(A|S) = \frac{P(SA)}{P(S)}$$

Thomas Bayes

 Rev. Thomas Bayes (1702 –1761) was a British mathematician and Presbyterian minister

- He looked remarkably similar to Charlie Sheen
 - But that's not important right now...

But First!

Background Observation

Say E and F are events in S

$$E = EF \cup EF^{c}$$

Note: EF \cap EF^c = \emptyset

So,
$$P(E) = P(EF) + P(EF^c)$$

Law of Total Probability

$$P(E) = P(EF) + P(EF^{C})$$
$$= P(E|F)P(F) + P(E|F^{C})P(F^{C})$$

Law of Total Probability

$$P(E) = \sum_{i} P(B_i \cap E)$$
$$= \sum_{i} P(E|B_i)P(B_i)$$

Moment of Silence...

Bayes Theorem

I want to calculate $P(\text{State of the world } F \mid \text{Observation } E)$ It seems so tricky!...

The other way around is easy P(Observation $E \mid$ State of the world F) What options to I have, chief?

P(F|E)

Bayes Theorem

Want $P(F \mid E)$. Know $P(E \mid F)$

$$P(F|E) = \frac{P(EF)}{P(E)}$$
 Def. of Conditional Prob.

A little while later...

$$= \frac{P(E|F)P(F)}{P(E)}$$
 Chain Rule

Bayes Theorem

Most common form:

$$P(F|E) = \frac{P(E|F)P(F)}{P(E)}$$

Expanded form:

$$P(F|E) = \frac{P(E|F)P(F)}{P(E|F)P(F) + P(E|F^{C})P(F^{C})}$$

H1N1 Testing

- A test is 98% effective at detecting H1N1
 - However, test has a "false positive" rate of 1%
 - 0.5% of US population has H1N1
 - Let E = you test positive for H1N1 with this test
 - Let F = you actually have H1N1
 - What is P(F | E)?
- Solution:

$$P(F \mid E) = \frac{P(E \mid F) P(F)}{P(E \mid F) P(F) + P(E \mid F^{c}) P(F^{c})}$$

$$P(F \mid E) = \frac{(0.98)(0.005)}{(0.98)(0.005) + (0.01)(1 - 0.005)} \approx 0.330$$

Intuition Time

People who test positive

People who test positive

People with H1N1

Conditioning on a positive result changes the sample space to this:

Conditioning on a positive result changes the sample space to this:

 ≈ 0.330

People with positive

People with H1N1

Say we have 1000 people:

5 have H1N1 and test positive, 985 **do not** have H1N1 and test negative. 10 **do not** have H1N1 and test positive. ≈ 0.333

Why It's Still Good to get Tested

	H1N1 +	H1N1 –
Test +	0.98 = P(E F)	$0.01 = P(E F^{c})$
Test –	$0.02 = P(E^c F)$	$0.99 = P(E^c F^c)$

- Let E^c = you test <u>negative</u> for H1N1 with this test
- Let F = you actually have H1N1
- What is P(F | E^c)?

$$P(F \mid E^{c}) = \frac{P(E^{c} \mid F) P(F)}{P(E^{c} \mid F) P(F) + P(E^{c} \mid F^{c}) P(F^{c})}$$

$$P(F \mid E^{c}) = \frac{(0.02)(0.005)}{(0.02)(0.005) + (0.99)(1 - 0.005)} \approx 0.0001$$

Slicing Up Spam

In 2010 88% of email was spam

Piech, CS106A, Stanford University

Simple Spam Detection

- Say 60% of all email is spam
 - 90% of spam has a forged header
 - 20% of non-spam has a forged header
 - Let *E* = message contains a forged header
 - Let F = message is spam
 - What is $P(F \mid E)$?

• Solution:
$$P(F \mid E) = \frac{P(E \mid F) P(F)}{P(E \mid F) P(F) + P(E \mid F^c) P(F^c)}$$

$$P(F \mid E) = \frac{(0.9)(0.6)}{(0.9)(0.6) + (0.2)(0.4)} \approx 0.871$$

Before Observation

Know: $P(O|L_i)$

Before Observation

After Observation

Know: $P(O|L_i)$

Before Observation

After Observation

$$P(L_5|O) = \frac{P(O|L_5)P(L_5)}{P(O)}$$

Before Observation

After Observation

$$P(L_5|O) = \frac{P(O|L_5)P(L_5)}{\sum_{i} P(O|L_i)P(L_i)}$$

Before Observation

After Observation

$$P(L_5|O) = \frac{P(O|L_5)P(L_5)}{\sum_{i} P(O|L_i)P(L_i)}$$

Before Observation

After Observation

$$P(L_5|O) = \frac{P(O|L_5)P(L_5)}{\sum_{i} P(O|L_i)P(L_i)}$$

Monty Hall

Piech, CS106A, Stanford University

Let's Make a Deal

Game show with 3 doors: A, B, and C

- Behind one door is prize (equally likely to be any door)
- Behind other two doors is nothing
- We choose a door
- Then host opens 1 of other 2 doors, revealing nothing
- We are given option to change to other door
- Should we?
 - Note: If we don't switch, P(win) = 1/3 (random)

Let's Make a Deal

- Without loss of generality, say we pick A
 - P(A is winner) = 1/3
 - Host opens either B or C, we <u>always lose</u> by switching
 - P(win | A is winner, picked A, switched) = 0
 - P(B is winner) = 1/3
 - Host <u>must</u> open C (can't open A and can't reveal prize in B)
 - So, by switching, we switch to B and <u>always win</u>
 - P(win | B is winner, picked A, switched) = 1
 - P(C is winner) = 1/3
 - Host <u>must</u> open B (can't open A and can't reveal prize in C)
 - So, by switching, we switch to C and <u>always win</u>
 - P(win | C is winner, picked A, switched) = 1
 - Should always switch!
 - \circ P(win | picked A, switched) = (1/3*0) + (1/3*1) + (1/3*1) = 2/3

Slight Variant to Clarify

- Start with 1,000 envelopes, of which 1 is winner
 - You get to choose 1 envelope
 - Probability of choosing winner = 1/1000
 - Consider remaining 999 envelopes
 - Probability one of them is the winner = 999/1000
 - I open 998 of remaining 999 (showing they are empty)
 - Probability the last remaining envelope being winner = 999/1000
 - Should you switch?
 - Probability winning without switch = original # envelopes
 - Probability winning with switch = original # envelopes 1
 original # envelopes

